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ABSTRACT 
The  problem of detecting  minor  quantitative trait loci (QTL)  responsible  for  genetic  variation not 

explained by major  QTL is of importance  in  the  complete  dissection of  quantitative  characters.  Two 
extensions of the  permutation-based  method  for  estimating  empirical  threshold values are presented. 
These  methods,  the  conditional  empirical  threshold  (CET)  and the residual  empirical  threshold  (RET), 
yield  critical values that can be  used  to  construct  tests  for  the  presence of minor QTL effects while 
accounting  for  effects of known  major  QTL.  The  CET  provides a completely  nonparametric  test  through 
conditioning  on  markers  linked to major QTL. It allows for general  nonadditive interactions among QTL, 
but its practical  application is restricted  to  regions  of  the  genome  that  are  unlinked to the major  QTL. 
The RET assumes a structural  model  for  the  effect of major  QTL, and a threshold is constructed  using 
residuals  from  this  structural  model.  The search space for  minor  QTL is unrestricted,  and  RET-based  tests 
may be more powerful than the  CET-based  test  when  the  structural  model is approximately  true. 

A" impressive amount of effort has gone into the 
development of  statistical methods for the detection 

of quantitative trait loci (QTL) (e.&, WELLER 1986,1987; 
LANDER and BOTSTEIN 1989; CARBONELL et al. 1992; 
KNOTT and HALEY 1992). Methods for the detection and 
location of a single  major  QTL are relatively  well  devel- 
oped,  but  the  important problem of detecting minor 
QTL has  received  only  limited attention ( JANSEN 

1993a,b; ZENC 1993,1994;JmsEN and STAM 1994). Real- 
istically,  many genetic factors contribute to the quantita- 
tive variation of  many (most) traits  of interest. In fact, 
the majority  of human genetic diseases can be thought 
of as complex traits (LANDER and BOTSTEIN 1986). In 
this paper we derive  statistical  tests for minor QTL  effects 
that take account of  known major QTL  effects. We also 
describe a sequential search procedure for multiple QTL. 
These methods are  an extension of  previous  work on 
permutation-based tests (CHURCHILL and DOERGE 1994). 

Procedures  for  detecting  a major QTL are typically 
based on a statistic that has power to detect  a shift 
in the quantitative trait mean between individuals in 
different genotypic classes as defined by a  marker or 
marker interval. The hypotheses being tested (HALEY 

and KNOTT 1992) are usually  as  follows: (1) HA: no QTL 
is present; (2) H:: a QTL  is present  but not linked to 
the  marker(s)  being tested; and ( 3 )  HA: a QTL  is pres- 
ent  and linked  to  the  marker(s). We refer to a location 
in  the  genome  at which the test statistic is calculated as 
an analysis point. The statistic will be computed at a 
number of  analysis points  throughout  the  genome,  and 
the analysis point  at which it takes its maximum value 
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is used as an estimate of  QTL location. The maximal 
value (over all  analysis points in  the  genome) of the 
test statistics can be used to construct  a test for  a major 
QTL effect. The problem of obtaining an  appropriate 
threshold value for this test has been addressed by 
LANDER and BOTSTEIN (1989,1994), REBM et al. (1994) 
and CHURCHILL and DOERGE (1994). The defining fea- 
ture of a  threshold value is that, under  the assumption 
of no QTL effects, the value of the test statistic should 
exceed the  threshold with probability not to exceed 
some nominal level a (e.g. ,  a = 0.05). There  are two 
types of errors  that can occur in the major QTL detec- 
tion problem. A type I  error occurs when no QTL ef- 
fects are  present  in  the  genome,  but we (incorrectly) 
declare significant effects. A type I1 error occurs when 
there  are QTL effects present  but we fail to detect  them. 
The relative importance of  type I and type I1 errors will 
depend  on  the particular application and  the resources 
available to the  experimenter. If the cost of a false  posi- 
tive result is not substantial, lower thresholds can be 
obtained using for  example a = 0.10 or a = 0.20. If 
false  positives are a serious concern,  a  more  stringent 
level a = 0.01 or a = 0.001 may be desirable. For a 
given  type I error rate,  the type I1 error rate can be 
decreased by increasing the size  of the  population. 

The threshold values derived by LANDER and 
BOTSTEIN (1989, 1994) are based on large sample ap- 
proximations for  the case  of an infinitely dense genetic 
map  and rely on specific assumptions about  the distri- 
bution of the quantitative trait. R E B A ~  et al. (1994) derive 
approximate  threshold values for the case in which the 
QTL effect is characterized by one estimable parameter. 
Their  approximation is based upon DAVIES' (1977) 
bound  and requires integral evaluation for each marker 
interval. Unfortunately, in  more complex situations 
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where the  number of model  parameters is greater,  the 
integration must be approximated by numerical means. 
CHURCHILL  and DOERCE (1994) describe a  permuta- 
tion-based method to estimate a  threshold value. The 
quantitative trait data  are  permuted with respect to the 
marker  data  a large number of times to effectively  sam- 
ple from the  distribution of the test  statistic under a 
null hypothesis of no phenotype-genotype associations. 
This method is intuitive and easy to implement.  It  does 
not rely on distributional assumptions regarding  the 
quantitative trait and is valid in small sample situations. 

It has been suggested (PATERSON et al. 1988; LANDER 
and BOTSTEIN 1989; LINCOLN et al. 1992a,b) that  once 
a major  QTL has been detected its  effects should be 
accounted for before a search for secondary QTL  is car- 
ried out. We consider a similar approach to the detection 
of multiple QTL in the form of a sequential testing pro- 
cedure. Essentially, the problem is one of model selec- 
tion in general. For the problem at  hand, we have chosen 
to use a forward selection procedure. Given that one  or 
more QTL  have been detected (declared significant), 
we account for the effects of these QTL and search the 
genome for the  next most significant QTL. Termination 
of the search occurs when no remaining QTL  effects 
are  detected. The  error structure of a sequential search 
procedure is complex and  at each step depends  on deci- 
sions made at earlier steps. At a given  stage in the sequen- 
tial search, a type I error may occur if a QTL  effect is 
detected at  an analysis point where there  are no linked 
QTL. The search for additional QTL  would then con- 
tinue, and any additional QTL detected may be genuine 
QTL or type I errors. A type I1 error can occur when no 
QTL effects are  detected,  but  there  are in fact QTL in 
the genome  that have not  been detected at  an earlier 
step. The seriousness of  type  I1 error  and  the subsequent 
decision to stop the search for further QTL is dependent 
on the magnitude of remaining QTL  effects.  For  exam- 
ple, if only genes of  negligibly  small  effect remain, stop 
ping may be acceptable. 

In this paper, we present two methods  for carrying 
out  the tests in a  sequential  search  procedure.  These 
methods are also applicable in the case where there is 
a known ( a  priori) major QTL, and we  wish to test for 
a secondary QTL while controlling  for  the effects of 
the major QTL. 

METHODS 

Motivation: The key to the  detection of QTL effects 
is the observation of  statistical association between the 
trait values and  the genotypes of markers segregating 
in an experimental  population. Both single marker and 
interval mapping  methods are well suited for  the detec- 
tion of a single major QTL somewhere in  the  genome. 
However, these methods often yield multiple indica- 
tions of  QTL effects at distinct analysis points. Our goal 
is to propose statistically sound  methods  for assessing 

the significance of secondary QTL effects. This assess- 
ment is not as straightforward as declaring  a universal 
threshold value or  an  increment to the single QTL 
threshold value. One must first account  for correlations 
of the markers under study with the major QTL effect 
and for other factors such as nonrandom segregation 
and/or patterns of missing data  that can lead to  false 
indications of secondary QTL effects. 

Two  possible causes for false indications of  QTL are 
type I error  and ghost QTL effects. MCMILLAN and ROE 
ERTSON (1974) discuss both type I  errors  and  detection 
of “ghosts” (ghost QTL) in their discussion of methods 
for  detecting loci affecting quantitative traits in Dro- 
sophila. They referred to two errors. “(i)  The detection 
of loci  which do  not exist. (ii)  The magnification of the 
estimated effect of those major loci  which do exist by 
accumulating to their effect those of undetected loci 
close to them  on  the  chromosome.” Type I errors  are 
a  property associated with  any  statistical  test procedure 
and can be controlled to occur  at or below a specified 
level by setting an  appropriate critical value. A ghost 
QTL is an artifact of cosegregation between QTL and 
nonadjacent or distant markers. Cosegregation with un- 
linked markers can occur due to chance or  due to selec- 
tion effects in the  experimental  population. More  typi- 
cally, a ghost QTL will present itself across intervals in 
the vicinity  of large QTL effects (KNAPP et al. 1990; 
HALEY and KNOTT 1992; MARTINEZ and CURNOW 1992; 
JANSEN 1993).  It is an  inherently difficult problem to 
distinguish between real multiple QTL located near 
one  another  and a single QTL with ghosting effects. 

Realistically,  several different regions of the  genome 
may contain genes whose segregating alleles affect the 
distribution of the trait. Major QTL are those that  con- 
tribute most to the  genetic variation, while minor QTL 
contribute less. The distinction is not  sharp. Having 
detected  a major QTL, we  wish to account  for its effects 
in order to assist detection of secondary QTL. This ap- 
proach will generally increase the power for  detecting 
unlinked secondary QTL effects and will reduce or 
eliminate ghosting. Power for  detecting multiple linked 
QTL will be diminished by this approach. The difficulty 
that arises in the study  of multiple linked QTL is that 
there  are few recombinants. One way to increase the 
number of recombinants is to increase the  number of 
progeny. Possible alternatives to using very large sam- 
ples, such as the  development of near isogenic lines 
(YOUNG and TANKSLEY 1989) or pooling strategies 
(CHURCHILL. et al. 1993),  should be considered. 

Procedures  for  constructing tests by conditioning on 
other markers in the  genome have been suggested by 
ZENG (1993,1994)  and byJANSEN (1993a,b, 1994).  The 
conditional  methods  introduced  here  are distinct in 
their  approach to the multiple QTL problem. The 
methods of ZENC and JANSEN construct local (interval) 
tests for QTL effects by conditioning on  and thus s u b  
tracting variation due to the rest of the  genome. Broad 
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conditioning can lead to limitations on the power  of 
these tests (ZENG 1994). Methods described here first 
account  for  the variation associated with  known or as- 
sumed QTL, then focus on  the remaining variation to 
detect secondary QTL. 

In the  remainder of this section we  will first describe 
the  permutation test for  a major QTL effect. We then 
discuss the  conditional empirical threshold (CET) and 
residual empirical threshold (RET) procedures in turn 
including  implementation of sequential search for QTL 
with justification. We conclude with comments on the 
permutation sample size and the use  of  t-tests. 

Permutation tests for major QTL effects: A permu- 
tation test for QTL effects has been described by 
CHURCHILL  and DOERGE (1994). The individuals in an 
experiment  are labeled 1 to n and each is scored at 
m genetic markers selected from a known map. Also 
associated with each individual is a trait value yi. A test 
statistic is computed  at each of a  number of analysis 
points and its maximum value is an  indicator of QTL 
effects in the  genome.  It is possible to use  any  test 
statistic in this procedure. Single marker F or t statistics 
or LOD scores from interval mapping (LANDER and 
BOTSTEIN 1989) are all reasonable choices. The trait 
values are shuffled N times among  the n individuals 
to create  permuted  data sets that have  only random 
genotype-phenotype associations. The permuted  data 
sets are  a representative sample from an  appropriate 
null distribution, HA or G. An empirical threshold 
value for  detecting  a major QTL effect is obtained by 
computing  the (1 - a )  percentile from the  Npermuted 
data sets  of the maximum test statistic  value  over the 
genetic map. 

CET values: In the QTL setting, when one or more 
QTL are known to  be linked to a  (set of) marker(s), 
the  population  can be stratified into  marker genotype 
classes. Permutations  are  then carried out within these 
classes. Stratification effectively controls  for  the effects 
of  known  QTL and can improve the power  of a test for 
additional QTL because the within  class variation is 
reduced.  Tight linkage between the  marker(s)  and  the 
QTL is desirable to obtain  the maximum amount of 
reduction in the variation. Analysis  of the  permuted 
data is carried out  to estimate a CET value. The idea 
of conditioning in this context is based on a suggestion 
of LEHMAN (pp. 230-231, 1986) for improving the 
power  of permutation tests by stratification on a variable 
known to affect the response. This procedure is com- 
pleteiy nonparametric in that it makes no distributional 
assumptions about  the quantitative trait nor  does it 
make assumptions about  the additive or nonadditive 
effects  of the QTL linked to the markers used to  define 
the strata. 

The steps of the  conditional  approach to multiple 
QTL detection may be applied to both single marker 
and interval analyses. We assume a fixed known genetic 
map  and a information  about  a major QTL. The 

marker or interval most  closely  associated  with the ma- 
jor QTL is called the  “conditioning  marker”  (“condi- 
tioning  interval”). We can estimate a CET  value that 
accounts  for  the variation due to the major QTL. The 
test statistic is not specified, as it is possible to use  any 
reasonable test  statistic  within this framework. In appli- 
cations of the CET method,  the critical value  is com- 
pared to the original test  statistics. 

To estimate the CET, individuals in the  population 
are  separated  into genotypic classes corresponding to 
the genotype at  the  conditioning marker. The result is 
a stratification of individuals into g genotypic classes, 
where, for example, g = 2 for backcross and recombi- 
nant  inbred populations, and g = 3 for an F2 popula- 
tion. In cases where a significant amount of genotypic 
data is missing, an  additional class  of individuals should 
be included. If the missing data class  is large, it may be 
prudent to choose an alternative conditioning marker 
even if it is  less tightly linked to the QTL. In  the event 
that  data  are  not missing at  random with respect to 
the trait values and  the QTL genotype, biases may be 
unavoidable. The stratification of  individuals into 
marker classes reduces (or in the case of perfect link- 
age, eliminates) the effect of the major QTL  within the 
classes. It is this reduction in variation that provides 
the power  of the test ( JANSEN 1994; ZENG 1994). The 
stratified data  are  then  permuted within each class to 
effectively destroy any remaining genotype-phenotype 
associations  within the classes. The shuffled data  are 
analyzed by computing  the maximal test statistic  over 
all markers outside the linkage group  containing  the 
conditioned marker. The maximal test statistics is 
stored, and  the process is repeated  N times. The (1 - 
a )  quantile of this sample provides an estimate of the 
conditional empirical threshold value. 

Sequential  search by CET This procedure can be 
continued for the  purpose of identifying additional 
QTL and controlling  for effect of  previously detected 
QTL.  For example,  a backcross  with  missing data has g 
= 3 genotype groups. Let A homozygous  class, H = 
heterozygous class, and M = missing data. The first 
conditioning marker has g = 3 (A,  H, M) possible geno- 
typic  classes to permute within. The second condition- 
ing marker, given the first conditioning  marker, has 3‘ 
possible genotypic classes ( A A ,  AH,  AM,  HA, HH, HM, 
MA, MH,  MM). The  third  conditioning marker has 33 
possible genotypic classes, and so forth. Each additional 
level  of stratification builds on  the previous  level of 
stratification. Potentially, there  are  a large number of 
stratifying factors (g, where c is the  number of condi- 
tioning  markers),  but many will  have zero or one indi- 
vidual, thus reducing  the additional work  of permuting 
within each class. As the  data become highly stratified, 
we lose  power to detect additional QTL and  the search 
space becomes increasingly limited. Two  key issues in 
the sequential search by  CET are  the search space itself 
and  the  error  structure. 
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When searching  for secondary QTL using the se- 
quential CET procedure, we suggest limiting the search 
space, the set of  analysis points considered, to those 
chromosomes on which no QTL have been  detected  at 
earlier steps. Inclusion of markers linked to the condi- 
tioning  marker(s) will lead to an elevated threshold 
value for  detecting effects at  other unlinked, markers 
thus reducing  the power of the test at these markers. 
The effect occurs because the  threshold is taken as the 
(1 - a) percentile of the maximum score over  all  analy- 
sis points. Markers linked to the conditioning  marker 
will continue to show associations with the major QTL 
in permuted  data sets and thus will show high values 
of the test statistic, increasing the global threshold. By 
eliminating  the  chromosome(s)  containing  the condi- 
tioning marker(s) from the search space, we gain power 
at unlinked loci. The price for this gain in power is the 
inability to detect multiple linked QTL. Ghosting effects 
due to correlations  among  unlinked markers will also 
lead to inflated threshold values. 

The  error structure  at each step of a sequential search 
procedure is dependent  on  the  pattern of decisions 
made at  earlier steps. If a type I error occurs at any 
stage, the process may stop or  continue,  but  once an 
error is made  the  marker associated with the  error re- 
mains in  the analysis. An incorrect inclusion of a  marker 
in the  conditioning process may  falsely direct  the re- 
mainder of the analysis.  Alternatively, if a type I1 error 
occurs ( i . e . ,  no QTL detected when there really is one), 
the  entire process terminates. 

In summary, the process described is sequentially 
decrementing  in  that each time a significant QTL is 
identified and its associated marker used to condition 
upon,  an experimentwise threshold value for  the re- 
mainder of the genome is estimated, and  the chromo- 
some is permanently removed from the analysis. The 
process proceeds in this manner until  either  no  more 
secondary QTL are  found, or until markers on each of 
the chromosomes representing  the total of the  genome 
have been  conditioned on,  and  there  are  no  more chro- 
mosomes to analyze. 

Justification for the CET test: Consider testing for  a 
secondary QTL in a backcross population  for which a 
single major QTL  is known to be segregating. Let 

0 nonrecurrent parental allele is absent 

1 nonrecurrent parental allele is present Q J t =  { 
indicate  the major QTL genotype of the ith individual. 
We  will assume the effect of nonrecurrent parental al- 
lele of the major QTL is a shift in  the location parame- 
ter of the trait distribution by an amount A I .  The condi- 
tioning  marker genotype is indicated by 

M1i = { 
0 nonrecurrent parental allele is absent 

1 nonrecurrent parental allele is present, 
and  the  recombination fraction between loci Ml and 
8 will be denoted by 7,. Similarly define  the  indicator 

Q Z  for  a secondary QTL, unlinked  to  the first, with an 
additive effect of  size A2 on  the location of the trait 
distribution. Let MZi be the  indicator  for  a  marker 
linked to the locus Q with recombination fraction r2. 
We assume that Ai f 0,  and 0 I ri < 1/2 for i = 1, 2. 

The trait value  is a  random variable with conditional 
(given the QTL genotypes) probability density func- 
tion. 

P Y l Q , @ ( Y ?  0,  0 )  = foe, 

P Y l Q , @ ( Y ?  1,  0 )  = f(y - AI), 

PYla,@(Y, 0 ,  1) = f(y - A d >  

P y l a , @ ( y ,  1, 1) = f ( y  - A1 - Az). 

Note thatf( ) may be taken from any  family  of continu- 
ous distributions. For example, if there  are  a  number 
of additional QTL (beyond  the major and secondary 
QTL under  consideration), f( ) itself  may be a mixture 
distribution (TITTERINGTON et al. 1985). 

Since in practice we  will observe QTL genotypes only 
indirectly through  the linked marker genotypes, the 
conditional distribution of interest is 

fiYlMl,M2(y, m1, m 2 )  = f l (1  - rl)l-ml 

x [Q(1 - T d - ? j I y ) +  4 - Y  - T 2 ) m q ( y  - Ad1 

+ dpml(l  -  TI)^^ X [ Q ( l -  ~2) '-?jIy - A,) 

+ &9(1 - ~ ) ? f ( y  - A1 - A,)]. 

This mixture of mixture densities reflects the possibility 
of recombination between the unobservabled QTL  ge- 
notypes and  the observed markers. Conditioning on 
additional QTL through linked markers will result in 
nested mixture distributions of the same general  form. 

The essential points  for this justification are as fol- 
lows: 

1. We assume that  there is a major QTL effect (Al f 

2. Either of the null hypotheses H&A2 = 0 or H$r2 = 

3. When A2 f 0 and r2 < I/,, there will be a location 
shift of magnitude ( '/, - r2)Az between the densi- 

0 )  linked to the  marker MI (71 < '/2). 

' / z  imply that P Y I M , , M ~ ( Y ,  ml, 0 )  = P Y I M , , M ~ ( Y ,  mlf 1) .  

ties P Y I M ~ , M ~ ( Y ,  m, 1) and P Y I M , , M ~ ( Y ,  m, 0 ) .  

Condition 2 is necessary. Condition 3 can be relaxed 
to allow location shift of more  general form (Le.,  to 
allow the effect of Q to depend  on  the state of QJ). 
The case where Q effects are  equal  but opposite sign 
within the 8 classes  is problematic. The likelihood 

n 

~ y ,  ml, m2) = n PYIM~,M~(Y,, ml,, %i) 

requires  a specific form for  the density function ) .  
A common choice off( ) is a  normal density such that 
the distribution of the  continuous trait values, when the 

i= 1 
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QTL genotype is known, will be normally distributed. 
Unbiasedness of the  permutation test in this situation 
is assured by the choice of L( ) and points (2) and (3), 
which  satisfy the  conditions of lemma 3 in LEHMANN 
(1986, p. 234). 

RET values: An alternative approach to detecting 
secondary QTL effects is to examine the residuals from 
a fitted model  for major QTL effects  within a  permuta- 
tion setting. In this situation, a structural model (e.g., 
additive effects) is assumed for the known  QTL  effects. 
Estimated mean  (genetic) trait values are  computed for 
each individual and residuals from these fitted values 
are analyzed to detect secondary effects. The residuals 
are  permuted across the  entire  experimental popula- 
tion and  the resulting data sets are analyzed to estimate 
a RET  value. This procedure is nonparametric in that 
there  are  no distributional assumptions on the  quantita- 
tive trait values. In situations where the structural model 
is true,  the RET  is more powerful than CET. 

We  will assume a structural model of the form 

y, = p + &Ql + € 8 ,  (1)  

where y is an overall mean for  the  population, Q i  is 
an indicator of the major QTL genotype, A, is the effect 
of an allelic substitution at  the QTL, and the ei are  error 
terms.  For a given marker MI,  tightly linked to Q ,  we 
can compute  a residual value for each individual ( i  = 
1, . . . ,  n)as  

6 = yi - p(0, (2) 

where p denotes  the sample mean of the quantitative 
trait values  within the  marker genotype class k and k( i) 
is the  marker genotype of the ith individual. 

The distribution of the residuals depends  on  the 
strength of linkage between the QTL and  the marker. 
If the QTL is completely linked to the marker, the QTL 
genotype classes are known  with certainty, and the re- 
siduals reflect the variation associated with the QTL. If 
the QTL is unlinked to the  marker or a type I  error 
occurs, the residual calculations are calculated based 
on random individuals assigned to marker classes. In 
the limit, as linkage between the marker and  the QTL 
becomes weaker, the  reduction in the residual variation 
grows smaller, and the power to  detect secondary QTL 
becomes less. 

The estimated residuals 4; i = 1 ,  . . . , n are now 
treated as new trait data. Any remaining phenotype-ge- 
notype associations may be tested directly on the resid- 
ual data using a  permutation test. RET  is different from 
CET  in that we recompute  the test statistics on unper- 
muted  data using residuals as  new traits and apply the 
standard  permutation test. 

Sequential  search by RET: The residual empirical 
threshold values are  influenced by the structural model 
that defines the  mode of the major QTL action. If the 
structural model is correct and  the linkage to the QTL 

is tight, one would expect this procedure to have higher 
power than  the CET procedure because the permuta- 
tions are  not restricted by stratification. As the linkage 
between the  conditioning  marker and  the QTL weakens 
(i .e. ,  becomes more distantly linked),  additional noise 
is introduced  into  the residuals, thus reducing  the 
power  to detect secondary effects. 

The sequential search for secondary QTL using RET 
is essentially the same as using CET except that it is no 
longer necessary to restrict the search space. Markers 
linked to the  conditioning marker are also linked to 
the major QTL and will have estimated genetic trait 
values that  reflect this linkage. The RET procedure may 
be used  in situations for multiple QTL detection/loca- 
tion, but  a loss of power around  the  conditioning 
marker is expected due to linkage. 

Justification for the RET test: Permutation tests re- 
quire exchangeability under the null hypothesis among 
the values being permuted.  Under mild conditions 
SCHMOYER (1994) shows that  permutation tests  with re- 
siduals are asymptotically  valid and consistent. In gen- 
eral, residual values are  not necessarily exchangeable 
or uncorrelated. Consider the  linear model 

Y = m + e .  

The matrix X is the matrix of indicators (0 or 1) on 
marker genotype associated at the  point of  analysis, P 
is the association between the phenotype and genotype, 
and e is a vector of  identically distributed random  er- 
rors. Under  the usual regression setup X is observed 
directly without error,  but in  this situation we observe 
the marker classes that  are tightly linked to the QTL 
and thus they reflect the QTL  classes  with some error 
due to recombination. The  condition of  SCHMOYER 
(1994) is that J . 0  + 0 as n + a, where D is the maximum 
diagonal element of X(X'X)"X'. When the columns 
of X are  indicator variables  of marker genotype, this 
condition is easily  verified. 

Number of permutations: The  number of permuted 
data sets  analyzed will determine the accuracy  with 
which we can estimate quantiles (e.g., critical  values) 
of the distribution of the test statistic under the null 
hypothesis. Through  experience, we have found  that N 
= 1000 is adequate  for estimating critical  values at  a 
significance level  of a = 0.05. EFRON (1993, pp. 208- 
209) details the distribution of the number of random- 
ized  test  statistic  values exceeding the observed  value of 
the actual test statistic as having a binomial distribution, 
Bin(N, a) .  Let 

a = Pr(T 2 TFm,), 

where Tis the actual observed  test  statistic and Tpm  is 
the value  of the test  statistic as derived under the null 
hypothesis for significance level a. Define a  pvalue d 
such that N& describes the  number of  times the N 
permuted replicates exceeded the specified threshold 
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value defined  for analysis. Therefore & has a binomial 
distribution, Bin(N, a ) ,  with mean a and variance a (  1 
- a ) / N .  If  we  wish to control  the resampling error 
associated  with our estimated p value, this may be re- 
flected through  the coefficient of variation m ( & )  to 
determine  the  number of shuffles, N, required to 
achieve significance level a with < l O O c u ( & ) %  error. 

1 - a  
N =  

a[cu(&)]2. 

In  other words,  as the  amount of error we are willing 
to make through type I  error  and resampling error 
decreases, the  number of permutation replications in- 
creases. For example, N = 1000 is required  for  a type 
I  error rate of 0.05  with < “13.78% Monte Carlo resam- 
pling error. 

Test statistic: The key property of the t-test, Ftest 
and  normal likelihood ratio or LOD score is that each 
measures the difference in class means, in fact - 

could be used directly in  the two class  case. We use the 
t-test  as our choice of test statistic for demonstration of 
the CET and RET procedures. The t-test  is just a scaled 
difference in means on a familiar scale, while the  Ftest 
and LOD score are  the sum of squared deviations from 
a  common mean. The t-test or Ftest provides a valid 
approach to single marker analysis for most standard 
experimental situations (e.g., backcross, I$, or R.I.). It 
is also  possible to use  CET and RET procedures within 
an interval mapping framework. To implement  the CET 
procedure within MAPMAKER/QTL (PATERSON et al. 
1988; LINCOLN et al. 1992a,b), classes for  the  conditional 
permutations can be constructed using joint genotypes 
of markers flanking the interval of interest.  The chro- 
mosome containing  the  conditioning interval should 
be eliminated from the  conditional analysis.  Similarly, 
it is possible to use the one QTL model within MAP- 
MAKER/QTL to  compute interval mapping LOD 
scores on the residual data. The residual data has to 
be recalculated, using Equation 2, after each level  of 
conditioning. 

EXAMPLES 

A simulated example: We consider the same exam- 
ple as in our previous  work (CHURCHILL and DOERGE 
1994). One  hundred genomes containing  four 100 cM 
chromosomes were simulated according to  a  standard 
backcross model. Chromosomes I and I11 each contain 
50 randomly placed markers. Chromosomes IZ and It’ 
each contain 10 randomly placed markers. The true 
genetic map was used in the QTL  analysis. A QTL  with 
additive effect 0.75 (a2 = 1.0) was simulated at 44.4 cM 
from the left end of chromosome I (between marker 
number 24 and marker  number  25). A second QTL of 
effect 1.0 (a2 = 1.0) was simulated at 61.6 cM from the 
left end of chromosome I1 (between marker number 
55 and marker  number 56). 

The first  QTL is detected using empirical threshold 
values (CHURCHILL and DOERGE 1994) at  a  5% signifi- 
cance level. Our goal is to accurately detect the QTL of 
lesser  effect  using  single marker t-tests. We also  calculate 
the equivalent single marker LOD score  analysis 
(DOERGE 1995). Since the evaluation is at the genetic 
marker, LOD scores determined by interval mapping 
within an interval of  known length may be higher due 
to the incorporation of genetic map information. We 
chose the single marker t-test as our test  statistic for com- 
putational speed and because it performs as well  as inter- 
val mapping when the marker map is dense (REBAI et al. 
1995). The results  of the estimated residual threshold 
analysis are  not presented since the RET  analysis pro- 
duces the same magnitude threshold values and results. 

The estimated permutation threshold for declaring 
the initial QTL significant at  the  5% level  is 3.3636 
(LOD = 2.3725). The largest t-statistic ( t  = 4.5412) 
for the original data is associated  with genetic marker 
number 55 linkage group 2. Marker 55 becomes the 
first conditioning marker. The trait values are per- 
muted (N = 1000) within the conditioning marker ge- 
notypic  classes.  Single marker analyses are  performed 
on the  permuted  data for markers in linkage groups 1, 
3 and 4 only. The experimentwise 95% critical value 
for declaring  a second QTL is 3.2606 (LOD = 2.2365). 
The largest test  statistic ( t  = 3.9577)  across linkage 
groups 1, 3  and  4 from the original data is associated 
with the genetic marker number 25 on linkage group 
1. We condition on both markers 25 and 55 and carry 
out  a  permutation analysis  of linkage groups 3  and 4. 
The original t-statistics associated with linkage groups 
3  and  4  are all  below the estimated 95% critical  value 
of 2.7738 (LOD = 1.6412), thus terminating the search. 

Rice data: A cross  between C039, a lowland indica 
cultivar developed in India,  and Moroberekan, an up- 
land japonica cultivar developed in Guinea, was used to 
derive 203 recombinant  inbred (R.I.) lines (F7 genera- 
tion) scored at  123 molecular markers. The trait of 
interest is root thickness (measured in microns) as it 
relates to root morphology and  drought avoidance in 
rice (CHAMPOUX et al. 1995). Moroberekan has a  deep 
thick root system,  whereas C039 has  shallow fine roots. 
The goal of  this  analysis is to identify regions of the 
genome associated with root thickness. 

CHAMPOUX et al. (1995) report 18 marker loci  associ- 
ated with the  root thickness trait. Stepwise regression 
was performed for the purpose of presenting the best 
three-Variable model that included markers RG197 
(chromosome I ) ,  RG214 (chromosome 4) ,  and E 3 9 8  
(chromosome 6). This model explained 56% of the 
phenotypic variation. If the  three markers were acting 
in an additive manner, 80% of the genetic variation 
would  have been explained. In addition to RG214 and 
RG197,  RG811 and RG437  were reported to explain in 
the  range of 50-57% of the observed variation when 



Multiple  Loci Permutations 29 1 

TABLE 1 

CET  values used in the  sequential  search  applied to the 
rice root thickness  data 

Conditioning  markers“  Chromosomeb  t-testc LODd 

RG214 
RZ398 
RG197 
RG570 
CD0533 
RG136 
CD0365 
RZ576 
RG13 
RG437 
RZ397 
RZ892 

4 
6 
1 
9 
7 
8 

11 
3 
5 
2 

12 
10 

3.337 
3.228 
3.231 
3.136 
3.037 
2.897 
2.736 
2.626 
2.595 
1.995 
1.952 

2.377 
2.227 
2.232 
2.105 
1.978 
1.803 
1.612 
1.487 
1.453 
.864 
.848 

a Indicates  which marker was added  at  each step of analysis. 
Chromosome on which QTL is detected. 
Based  on  t-tests From 1000 conditional  permutations of 

the  original data. 

where n1 and TQ are the sample  sizes of the genotypic  marker 
classes, and Tis the  t-test  statistic (DOERGE 1995). 

taken in various combinations with each other, thus 
implying some amount of interaction. 

Both of the methods  presented  in this paper  are a p  
plied to the R.I. data  set using single marker analysis 
(t-tests). The CET  analysis, when performed using 95% 
experimental  permutation  threshold values across the 
remaining  genome,  found  a significant marker on each 
chromosome  (Table 1). Among the markers found sig- 
nificant, RG214,  RZ398,  RG197, and RG437  verify the 
original analysis, however, no significance of  RG811  is 
indicated. Since RG811 and RG197 are  both  on chro- 
mosome 1, and RG197  shows stronger evidence for link- 
age, RG811 is eliminated with the rest of the markers 
on chromosome 1. Each  of the 12 regions detected by 
CET  is associated with root morphology QTL (CHAM 
POUX et ul. 1995). Table 1 summarizes the results. 

The RET values  were estimated using the  structural 
model  in  Equation 1 to describe the behavior of the 
QTL effect and 95% experimental  permutation thresh- 
olds. Markers RG214,  RG197,  RG351, and RG64  were 
found significant (Table 2).  While  RG214 and RG197 
correspond to the previous analyses, the  structural QTL 
model may not be correct, due to the nonadditive na- 
ture of the markers ( CHAMPOUX et al. 1995). 

Simulations: The  error rate characteristics of the se- 
quential  search  procedure have been  studied by simula- 
tion. A known (random) genetic map was established 
as described in example 1. Monte Carlo simulation was 
used to generate 500 data sets each  for 0, 1 and 2 QTL 
models (as  described  above). The Monte Carlo data 
were analyzed using t-tests, and  the  number of correct 

TABLE 2 

RET values  used in the  sequential  search  applied to the 
rice root thickness  data 

Conditioning  markers“  Chromosomeb t-test‘ LODd 

RG214 
RG197 
RG351 
RG64 

4 3.650 2.829 
1 3.487 2.589 
7 3.489 2.592 
6 3.528 2.648 

Indicates which marker was added at each step of analysis. 
Chromosome on which QTL is detected. 

“Based on t-tests from 1000 residual  permutations of the 
original  data. 

where n, and m2 are  the sample sizes of the genotypic marker 
classes, and Tis the t-test statistic (DOERGE  1995). 

indications per  chromosome was recorded  for CET and 
RET under sample sizes  of n = 100 and n = 200. Table 
3 summarizes the  complete results for each simulation. 

For the 0 and 1 QTL Monte Carlo simulations RET 
outperforms CET,  however for  the 2 QTL model CET 
appears to be slightly more powerful. With perfect data 
(ie., no missing data)  and increased sample size  this 
result is most likely an artifact of simulation. Increased 
sample size improves the power for  both tests. Table 3 
also  shows the  number of times each incorrect  model 
was indicated.  These simulations suggest that,  on aver- 
age, RET underculls the  detectable QTL more  than CET, 
while  CET overculls the  detectable  number of QTL more 
often  than RET. An undercall is at least one true QTL 
missed. An overcall is the  correct  model plus extra QTL. 

Monte Carlo simulations were  also performed  for  a 
three-QTL situation where two QTL of equal size (addi- 
tive effect 1.0) were placed on  the first chromosome 
(between marker  number  4 and  5,  and between marker 
number 24 and marker  number  25), and a  third QTL 
of equal size was placed on  the second chromosome 
(between marker number 55 and marker  number 56). 
Adistance of  39.9 cM defined  the  map distance between 
the first and second QTL. The Monte Carlo simulation 
and  the backcross are as in the first example  presented 
above. Residual empirical threshold values  were  esti- 
mated  for sample sizes n = 100 and n = 200 for  the 
purpose of evaluating the RET method of multiple QTL 
detection. As expected sample size  plays a critical role 
in the identification of multiple QTL on  the same chro- 
mosome (Table 4). Simulation results show that  for 
sample size n = 100, RET found two QTL on the first 
chromosome 143 times (the correct model 129 times), 
while it correctly detected  the  third QTL  416  times. 
Doubling  the sample size ( n  = 200) improves the power 
of  RET.  Two QTL were detected on chromosome I 
408 times out of the 500 Monte Carlo simulations (the 
correct  model 363 times),  and 499 correct identifica- 
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TABLE 3 

Power simulations for CET and RET values 

Method" 

RET  CET 

True  model6  True  model  True  model  True  model 

All possible 
QTL  models 0 1 2 0 1 2 0 1 2 0 1 2 

( n  = 1003 ( n  = 200) ( n  = 100) (n = 200) 

0000 md 33 6 4 8 0  1 467 75 54 g-4 
1000 64 9 4 29 14 
0100 452 161 1 %  15 7 3 8 2  95 476 9 
0010 1 9 25 
0001 18 8 1 
1100 266 1 4 4 7  20 296 4 4 6 5  
1010 13 
1001 
0110 15 9 IO 
0101 6 10 
001 1 
0111 4 
1011 
1101 2 37 13 10 
1110 1 1 2 
1 1 1 1  

- 

" 500 Monte Carlo  simulations  each  of  RET  and  GET  sequential  searches  were  carried out using single  marker  t-test, 95% 
permutation  threshold values, and N = 1000 permutations. 

'' QTL models  for  simulated  data  are 0 = 0000 (no QTL), 1 = 0100 (one QTL on chromosome 2), 2 = 1100 (one QTL on 
chromosomes 1 and 2) .  The  binary  pattern  indicates the presence ( 1 )  or absence (0) of a QTL  on  each of four  chromosomes. 

'The table  shows  the number of times each of the  possible  models was indicated by the  sequential  search.  The true model 
n denotes  sample  size. 

is underlined. A dot  indicates  that the model was never  identified in any of the simulations. 

tions were made for the  third QTL on chromosome ZZ. 
The  number of overcalls when compared to the un- 
dercalls were  fewer. 

DISCUSSION 

Permutation tests provide a practical and easily imple- 
mented  method to search  a  genome  for multiple QTL. 
Once  a major QTL has been  detected, its phenotypic 
effects can be accounted  for  in  the  search  for secondary 
QTL. Conditional and residual permutations provide 
critical values for  the  construction of  valid hypothesis 

TABLE 4 

Power simulations for three QTL model using RET values 

Result" n = 100 n = 200 

Overcallb 2 45 
Correct' 129 363 
Undercalld 365 92 
Incorrect' 4 0 

500 Monte Carlo  simulations. 
'All three QTL plus nonsimulated  QTL were identified. 
'The correct 3 QTL model was identified. 

Not all of the three QTL  were detected. 
'AI other incorrect  models. 

tests that  account  for  the specifics  of the  experiment 
(e.g., marker density, missing data,  nonnormality of trait 
values) as  well as effects  of  known major QTL. 

There  are a  number of test  statistics  available that 
can be used to locate QTL (WELLER 1986; LANDER and 
BOTSTEIN 1989; KNAPP et al. 1990; CARBONELL et al. 
1992; HALEY and KNOTT 1992). Recently, (JANSEN 
1993a,b; ZENG 1993, 1994) multiple regression-based 
methods have been  presented  that  condition on  the 
remainder of the  genome  for  the  purpose of con- 
structing  a test in  a  defined interval. The concept is to 
test the  current location within the interval void  of  any 
effects caused by additional QTL elsewhere in the ge- 
nome. ZENG (1993) notes  that  conditioning  on linked 
markers in  the analysis will increase the precision of 
the test and parameter  estimation, yet decrease the sta- 
tistical power of the test. While  many  discussions  have 
arisen as to which  test statistic i s  "best", in the  end,  the 
key issues are power to detect QTL and robustness of 
the  procedures to model assumptions. Statistical  tests 
based on  the permutation  principle have  many desir- 
able  properties.  In  particular, they  allow one to empiri- 
cally derive the distribution of a test statistic under an 
appropriate null hypothesis without relying on a distri- 
butional assumptions. 

The methods  presented in this work are based on 
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the classical Neyman-Pearson formulation of statistical 
hypotheses testing (LEHMANN 1986, pp.  74-76). This 
approach sets up a  null hypothesis that is to be rejected 
in favor  of an alternative in light of sufficient evidence 
in the data. A different  approach to the QTL problem 
could be based on a decision theory viewpoint (BERGER 
1985).  The result of QTL analysis  would be  declaration 
of the certainty with  which a QTL exists at a specific 
location, based upon  prior knowledge of the experi- 
mental  situation. 

The problem of detecting  and locating multiple QTL 
is complicated by many factors. When multiple QTL 
are  unlinked and/or reside on different chromosomes, 
the  methods  presented  here provide threshold values 
appropriate  for testing secondary QTL effects. How- 
ever, when multiple QTL are tightly linked, increased 
frequency of recombinants may be the only hope for 
such differentiation, regardless of methodology. By in- 
creasing sample size, parameters may be estimated 
more accurately, and  the power for  detecting QTL in- 
creased. Unfortunately, even though  the  number of in- 
dividuals scored  at  each  marker and measured trait may 
appear to be large enough  for effective estimation, miss- 
ing  marker  data can quickly decrease samples to less 
than optimal numbers. While we assume that  data  are 
missing at  random, a glance at almost any experimental 
data  set will demonstrate otherwise. Contamination of 
samples, bad digest, or difficulty in scoring certain 
markers are  among  the sources that  produce missing 
data  patterns (specific individuals or markers). A de- 
scriptive summary of the  marker, trait, and marker by 
trait missing data may aid in identifying markers and/ 
or traits that are responsible for loss  of statistical power. 
The problem of missing genotype data can be serious 
and is  worthy  of further investigation. 

Finally, the issue of cosegregation between QTL and 
distant markers that  create ghost QTL effects may  mis- 
lead the search for QTL. MARTINEZ and CURNOW 
(1992)  present  a simulation study where two QTL of 
equal effect, separated by one (empty) interval, create 
a ghost QTL in the empty interval having larger  effect 
than  either of the known  QTL. When the QTL effects 
are changed to equal  but  opposing sign, the ghost QTL 
is eliminated. However, the estimation of QTL effects 
are  underestimated. Ghost QTL are a key issue in the 
proper  detection of  QTL. Further work on distinguish- 
ing between ghost QTL and multiple QTL  is needed 
to fully address the QTL detection/location  problem. 

Each  of the  methods  presented  in this paper is non- 
parametric in the sense that  no distributional assump 
tions are placed on  the  error structure. One may con- 
sider  the residual based thresholds as semiparametric 
since a  structural  model is employed to model the ef- 
fects of known QTL before calculating residuals. The 
conditional  permutation  thresholds  are completely 
nonparametric,  and allow one to account  for multiple 
QTL without relying on  the restrictions of model-based 

parametric tests.  Existing multiple QTL regression 
models (see above citations) assume independent  and 
identically distributed  normal error structure  (mean 0 
and variance 0'). If the model assumptions are  correct, 
then these methods ( JANSEN 1993a,b; ZENC 1993,1994) 
may perform  better. However, if the statistical model 
describing the QTL action is not valid, the  protection 
against model failure provided by the  nonparametric 
permutation  methods is a realistic alternative. 

We have generalized the permutation test to account 
for  the effects of known major QTL through  their asso- 
ciation with genetic markers. The two methods sug- 
gested here  are direct extensions of previous work using 
permutation theory (CHURCHILI. and DOERCE 1994). 
Both methods  are easily implemented and can be used 
in conjunction with any method of  QTL detection  for 
the  purpose of estimating threshold values for specific 
experimental situations. 
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